Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
739 kez görüntülendi

Bu sorudaki integralde $x=a\cos u$ dönüşümü yapınca çıkıyor bu integral. Üzerinde düşünmeme rağmen ilerleme kaydedemedim halen.

Lisans Matematik kategorisinde (2.9k puan) tarafından  | 739 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

$$a>b \,\ \text{ ve } \,\ k^2=1-\left(\frac{b}{a}\right)^2$$ olmak üzere

$$\int\sqrt{b^2\sin^2 u+a^2\cos^2u}du$$

$$=$$

$$\int\sqrt{b^2\sin^2u+a^2(1-\sin^2u)}du$$

$$=$$

$$\int\sqrt{a^2-(a^2-b^2)\sin^2u)}du$$

$$=$$

$$a\int\sqrt{1-\left( \underset{k^2}{\underbrace{1-\left(\frac{b}{a}\right)^2}}\right) \sin^2u}du$$

$$=$$

$$ a\int\sqrt{1-k^2\sin^2u}du $$

Bu da ikinci tip eliptik integral. Bunu bilinen elemanter fonksiyonlar cinsinden integre edemezsin.

(11.6k puan) tarafından 

Burada iki tür eliptik integrallere dair bazı bilgiler mevcut.

20,336 soru
21,890 cevap
73,625 yorum
3,156,841 kullanıcı